• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 WWW.QUFUTJ.COM 0.92733s
2 2000UU.com 0.57806s
3 JACQUES.BALUTIN 0.39394s
4 44AH.com 0.46352s
5 WWW.GHNNJ.COM 0.65376s
6 READ61.com 0.34190s
7 WWW.VSJCN.COM 0.85127s
8 WWW.LYW668.COM 0.69879s
9 WWW.12580.COM 0.17188s
10 WWW.NJZQ.COM 0.73748s

最新测速

域名 类型 时间
WWW.HANGZHOU.COM get 0s
WWW.4BBBBB.COM get 0.22483s
WWW.HHH979.COM get 2.74794s
WWW.107TV.COM get 0.195573s
WWW.22SWZ.COM get 2.128477s
WWW.XIUHAO8.COM get 1.592307s
QYLSP7.com get 1.967346s
33IZMC.com get 1.89068s
99RRSS.com get 0.176235s
WWW.HBTCTY.COM ping 0.152507s

更新动态 更多

 

http://pq9p2.cn | http://www.pglwg3ui0.cn | http://m.qfl2x.cn | http://wap.uk1enwypu.cn | http://web.8pg17e3.cn | http://ios.5skt58lf.cn | http://anzhuo.646f7.cn | http://book.pq9p2.cn | http://news.fl26euz.cn

WWW.036478.CC,WWW.2000QQQ.COM测速|网站测速|网站速度测试

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

锂电池是跨学科研究的重大突破

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

在20世纪70年代,世界范围内爆发了石油危机,能源研究开始兴起。此时斯坦利·惠廷厄姆正在研究无化石燃料的能源技术。他和同事发现了锂离子可以在电极间来回穿梭,具备了充电能力,并能在室温下工作。在研究超导体时,他发现了一种能量极其丰富的材料,由二硫化钛制成,在分子水平上具有可以容纳(嵌入)锂离子的空间。他将这种材料放在锂离子电池的阴极,阳极部分则由金属锂制成,成功研制出了锂离子电池。可是,金属锂具有强烈的反应性,电池很容易爆炸,无法使用。

锂离子电池主要由阴极、阳极、电解液、隔膜、外电路等部分组成,依靠锂离子在阴阳极之间的移动产生电流。电池阴阳极材料的选择对于能效和安全性至关重要。目前最普遍的可充电锂离子电池,使用钴酸锂材料为阴极,碳材料为阳极,具有能量密度高、循环寿命长、安全可靠等优点。

在20世纪70年代,世界范围内爆发了石油危机,能源研究开始兴起。此时斯坦利·惠廷厄姆正在研究无化石燃料的能源技术。他和同事发现了锂离子可以在电极间来回穿梭,具备了充电能力,并能在室温下工作。在研究超导体时,他发现了一种能量极其丰富的材料,由二硫化钛制成,在分子水平上具有可以容纳(嵌入)锂离子的空间。他将这种材料放在锂离子电池的阴极,阳极部分则由金属锂制成,成功研制出了锂离子电池。可是,金属锂具有强烈的反应性,电池很容易爆炸,无法使用。

这个时候,约翰·古迪纳夫预测,如果使用金属氧化物制成电池的阴极,而不是金属硫化物,将具有更大的潜力。经过系统的搜索,他在1980年证明了嵌入锂离子的氧化钴可以产生多达4伏的电压。他使锂离子电池体积更小、容积更大、使用方式更稳定,从而实现商业化,同时也开启了电子设备便携化进程。

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

2019年度诺贝尔化学奖将荣誉颁给锂离子电池的研发。这种重量轻、可充电、功能强大的电池被广泛应用于从手机到笔记本电脑和电动汽车等各个领域。来自美国和日本的三位科学家因在锂离子电池研发领域的贡献,共享今年的诺贝尔化学奖。其中,约翰·古迪纳夫出生于1922年,今年97岁高龄的他被誉为“锂离子电池之父”,他也是诺奖最年长的获奖者。

20世纪70年代的石油危机催生了对新能源储能的需求,也推动了电池研发,为未来锂离子电池打下基础。当时正致力于超导体研发的惠廷厄姆创新地使用二硫化钛作为阴极材料存储锂离子,以金属锂作为部分阳极材料,制成了首个新型电池。但由于金属锂化学特性过于活泼,这种电池具有易爆炸的潜在危险。

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

金钟介绍,锂离子电池的发展包含了无数科学家的心血。长久以来,人们一直在努力研发能够存储大量电能的设备,用来给电气设备、电子元件提供动力。“以前的传统电池都或多或少地存在若干缺点,比如能量密度低、循环寿命短、价格高昂等。而锂离子电池,是科学家们经过不懈努力后,找到的一种性能足够好、价格平民化的电化学储能器件,称得上是一个革命性的突破。”

诺贝尔委员会成员奥洛夫·拉姆斯特伦评价获奖成果时说:“这一神奇电池所带来的巨大的、惊人的社会影响有目共睹。”诺贝尔委员会还说,获奖研究有助于我们从由化石燃料驱动的生活方式转向由电能驱动的生活方式,对于应对气候变化也至关重要。

最年长获奖者,97岁科学家创纪录

本届诺贝尔化学奖花落锂离子电池可谓众望所归。早在20世纪70、80年代,三位获奖研究者就确立了现代锂离子电池的基本框架,20世纪90年代起,锂离子电池开始大规模进入市场,如今已几乎无处不在。